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ABSTRACT
Genetic data are frequently categorical and have complex dependence structures
that are not always well understood. For this reason, clustering and classification
based on genetic data, while highly relevant, are challenging statistical problems.
Here we consider a versatile U-statistics based approach for non-parametric cluster-
ing that allows for an unconventional way of solving these problems. In this paper we
propose a statistical test to assess group homogeneity taking into account multiple
testing issues and a clustering algorithm based on dissimilarities within and between
groups that highly speeds up the homogeneity test. We also propose a test to verify
classification significance of a sample in one of two groups. We present Monte Carlo
simulations that evaluate size and power of the proposed tests under different sce-
narios. Finally, the methodology is applied to three different genetic datasets: global
human genetic diversity, breast tumor gene expression and Dengue virus serotypes.
These applications showcase this statistical framework’s ability to answer diverse
biological questions in the high dimension low sample size scenario while adapting
to the specificities of the different datatypes.

KEYWORDS
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1. Introduction

The last few decades have seen a tremendous rise in the availability and diversity
of genetic data, and with it, a marked increase of statistical methods tailored to an-
swer biological questions. Clustering and classification are at the heart of many of
these genetic problems. In this paper we explore a model free approach for clustering
and classification of genetic data based on U-statistics that leads to alternative ways
of looking at these problems. The methods are versatile enough to be applied to a
wide variety of genetic problems and adaptable enough to consider the specificities of
different datatypes.

Classical inference in this area generally depends on specific modeling assumptions.
However, the complexity of genetic data presents a challenge for parametric multivari-
ate analysis techniques. In fact, details of the data generating processes are not always
well understood and modeling them might involve a large number of parameters. In
this context, Pinheiro et al. [23] propose an alternative method to test group homo-
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geneity based on the Hamming distance, which gives less emphasis to the likelihood
function and more to dissimilarity measures. The test statistic is built upon compar-
isons of these measures between and within groups, and the test does not require
homocedasticity assumptions. Asymptotic normality of the test statistic is obtained
through properties of U-statistics.

This approach is particularly appealing in the high-dimension low-sample size
(HDLSS) scenario prevalent in genetics for not requiring the computationally intensive
covariance matrix inversions, which in these cases are also frequently singular [28]. In
this scenario, Pinheiro et al. [22] show that these dissimilarity measure based statistics
belong to a general class of first order degenerate U-statistics. Furthermore, under the
hypothesis of homogeneity, martingale properties are available for this class, allowing
for asymptotic results. These asymptotic properties hold, even without assumptions
of stochastic independence or homogeneity of the marginal probability laws. Further-
more, in the work by Valk and Pinheiro [31] these tests were adapted to the time series
framework. The resulting test statistics are asymptotically Gaussian, both for the in-
dependent and identically distributed case, as well as for non-identically distributed
groups of time-series under mild conditions. These conditions make it possible to deal
with different correlation structures. In this paper we explore this U-statistic clustering
framework in the context of genetic data.

We first examine the problem of clustering a set of observations into two groups
and assessing their significance. While there are many different clustering methods in
common use [11], assessing the significance of a particular clustering, specially in the
HDLSS scenario, is still a challenging problem. Suzuki and Shimodaira [30] present the
R package pvclust that contains an approach inspired in the bootstrap strategy used
in phylogeneics to assess confidence in hierarchical clustering. Maitra et al. [19] assess
the significance of a sample clustered through k-means, by assuming that clusters are
compact and, after some ellipsoidal local transform, are spherical and similar to other
clusters. While both methods are not well suited for HDLSS datasets, Liu et al. [18]
present a statistical test of clustering focusing on this environment. Their approach,
implemented in the R package SigClust [13], can be applied to any clustering method
and has a test statistic built on the ratio of the within cluster variation to the total
variation. However, they adopt as the null hypothesis a normality assumption, which
can be an issue since rejection of the null may be a simple consequence of non-normal
data.

To address the issue of assessing significance in clustering, we propose a U statistics
based test that takes as the null hypothesis overall group homogeneity. Additionally,
when the Euclidean distance is considered, we present a clustering algorithm that
represents a significant speed-up for the homogeneity test. This approach thrives in
the HDLSS context, and unlike the other methods is model-free and can be applied
to both categorical and quantitative data.

Next, we consider the problem of a new element that must be classified in one of two
groups. Kalina [14] reviews classification methods for high dimensional genetic data,
highlighting that many of the traditional methods are not well suited for HDLSS. The
widely used classification methods, such as linear value decomposition, Bayes classifiers
and support vector machine methods [11] measure confidence in this classification by
attributing a classification probability/score to the assignment of the sample in each
group. As an alternative way of looking at this problem, we propose a statistical test
to verify whether the new element’s classification in one of the groups is statistically
significant.

Finally we explore these results in three applications that showcase the versatility of
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our methods. In the first application, we resolve small discrepancies between different
tree classifications of human populations built on SNP frequency data. In the second
one, we improve confidence in classification of a patient tumor subtype based on gene
expression data through the classification test, which can lead to more reliable disease
prognostics. Finally, we explore the genetic diversity of Dengue virus through sequence
data, by finding genetically homogeneous clusters.

The paper is organized as follows: in Section 2 we present the basic notions of
U-statistics and U-statistics based tests. The U test for group separation, the group
homogeneity test as well as the classification test are in this section. Section 3 presents
a Monte Carlo simulation study for the classification test in which we consider different
sample sizes and separation degrees between the two groups to estimate size and power
of the classification test. This section also contains a simulation study for comparative
analysis of power and size of the homogeneity test. Section 4 presents three applications
of the methodology, and Section 5 presents discussions of our results.

2. U-Statistics Based Tests

U-statistics were introduced by Halmos [9] and Hoeffding [12] and play an important
role in estimation theory. Details on the general theory may be found in Denker [6] and
Lee [17]. Particularly in this work we are interested in the class of U-statistics of order 2.
For a random sample X1, · · · , Xn of size n ≥ 2 sampled from a distribution F1, suppose
there is a symmetric square integrable function g(·, ·), such that E(g(X1, X2)) ≡ θ(F1).
Then the U-statistics with kernel g, defined as

Un =

(
n

2

)−1∑
Cn,2

g(Xi1 , Xi2), (1)

is an unbiased estimator of θ(F1), where the above summation is over the set Cn,2 of
all (n; 2) combinations of 2 integers, i1 < i2, chosen from {1, 2, · · · , n}.

Consider a second random sample Y1, · · · , Ym of size m ≥ 2, drawn independently
from a distribution F2 belonging to the same family of distributions as F1, and let
θ(F1, F2) be an unknown estimable parameter in the Hoeffding’s sense (12). Then
if there exists a function d : R2 → R, where E(d(X,Y )) ≡ θ(F1, F2), being a dis-
tance function such as the Euclidean one, the parameter θ(F1, F2) will be a func-
tional distance between distributions F1 and F2. For multivariate categorical and/or
quantitative random variables where, for each i-th sequence, for i ∈ {1, · · · , n}, let
Xi = (Xi1 , · · · , XiL)′ be an L-vector and let n be the sample size or the total number
of sequences. Let θ(F `1 , F

`
2) be a similar functional of the `-th marginal distribution

F `g , for ` = 1, · · · , L and g ∈ {1, 2}. Then assume there exists an order 2 symmetric
kernel φ(·, ·) such that

θ(F `1 , F
`
2) =

∫ ∫
φ(x1, x2)dF `1(x1)dF `2(x2). (2)

Therefore, θ(F `1 , F
`
2) satisfies

θ(F `1 , F
`
2) ≥ 1

2
{θ(F `1 , F `1) + θ(F `2 , F

`
2)},

3



for all F1, F2 and ` = 1, · · · , L. If we assume that θ(·, ·) is a convex linear function of
the marginal distributions, this implies that

θ(F1, F2) ≥ 1

2
{θ(F1, F1) + θ(F2, F2)}, (3)

for all distributions F1 and F2, where equality sign holds whenever E(X) = E(Y ).
For our purpose we shall consider two groups, that is, G = 2 (although, the theory

holds for G ≥ 2). We shall also consider two multivariate categorical and/or quantita-
tive samples of L-vectors drawn from distributions F1 and F2 that are L-dimensional
distributions defined on a common probability space. The aim is to test the homo-
geneity of groups with respect to their diversity measures. The test is based on the
functional distance θ(·, ·) as defined in (3), where its sample version is a generalized
U-statistics. In this multivariate setup, let (Xg1, · · · ,Xgng

) denote the vector of ng
observations in the g-th group of size ng, for any g ∈ {1, 2}. Therefore,

U (g)
ng

=

(
ng
2

)−1 ∑
1≤i<j≤ng

φ(Xgi,Xgj), (4)

is the g-th generalized U-statistics, for g ∈ {1, 2}, with kernel φ(x,y). In others words,

U
(g)
ng is the estimator of the functional distance based on distances within groups of

samples drawn from the distribution Fg, for any g ∈ {1, 2}. Similarly, the generalized
U-statistics

U (1,2)
n1,n2

=
1

n1n2

n1∑
i=1

n2∑
j=1

φ(X1i,X2j) (5)

is an unbiased estimator of θ(F1, F2), and satisfies (3). Pinheiro et al. [23] consider the
following sub-group decomposition for the combined sample Un

Un =

2∑
g=1

ng
n
U (g)
ng

+
n1n2

n(n− 1)
(2U (1,2)

n1n2
− U (1)

n1
− U (2)

n2
) = Wn +Bn, (6)

where n = n1 +n2 is the sample size. Pinheiro et al. [22] show that Bn is in the class of
degenerate U-statistics (called quasi U-statistics) where the asymptotic distribution is
normal with convergence rates L and/or n, even if the assumption of stochastic inde-
pendence between samples does not hold. Adapting the results in Pinheiro et al. [22]
to the context of time series, Valk and Pinheiro [31] develop methods for classification
and clustering analysis for stationary time series.

2.1. U test for Group Separation

We consider G1 and G2 two groups of samples and employ the U test for group separa-
tion to assess whether these groups constitute statistically significant separate clusters.
Each group is assumed to be homogeneous in distribution. The null hypothesis states
that both groups are not separate, coming from the same probability distribution,
while the alternative hypothesis states that they are in fact separate groups.
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The test statistics for the U test is defined as

Bn =
n1n2

n(n− 1)
(2U (1,2)

n1n2
− U (1)

n1
− U (2)

n2
), (7)

where U
(1)
n1 and U

(2)
n2 are U-statistics associated to within group dissimilarities, as

defined in (4), and U
(1,2)
n1n2 is the U-statistic associated to between group dissimilarities

as defined in (5).
Under few regularity conditions, found in Pinheiro et al. [22], Bn is asymptoti-

cally normally distributed. The test statistic compares weighted distances between
and within groups. Thus, from property (3), under the null hypothesis, E(Bn) = 0,
since all samples are generated from the same distribution. Under the alternative,
E(Bn) ≥ 0, since distances between groups are expected to be larger than distances
within groups. However, due to the fact that the variance of Bn is unknown, we em-
ploy a resampling procedure akin to permutation tests to obtain the test statistic
distribution under the null hypothesis and to assess the statistical significance (23).

2.2. Assessing Group Homogeneity

The main assumption for applying the U test is homogeneity for each group. In order
to verify group homogeneity, Valk and Pinheiro [31] employ a combinatorial procedure.
For each possible arrangement of all group elements in two subgroups, the U test is
applied. If the null hypothesis of group homogeneity is rejected for at least one of the
arrangements, then the group is considered non-homogeneous. This procedure can only
be applied if the group has at least 4 elements, since we can only consider arrangements
where each subgroup has at least two elements.

When testing in-group homogeneity for large group sizes, the number of possible
assignments of all n elements in 2 subgroups (that is, 2n−1 − n− 1) soon becomes an
important computational issue. To reduce the computational effort of assessing overall
group homogeneity we attempt to identify the subgroup configuration that best sepa-
rates the two groups. That is, if we accept the null hypothesis for the subgrouping with
this configuration, then all other arrangements will also necessarily be homogeneous.
Thus, with this strategy, we need to apply the U test only once.

Note that under H0 the statistic Bn is asymptotically normal with zero mean.
Therefore, Bn/

√
Var(Bn) is asymptotically standard normal and the group configu-

ration that maximizes this function will also have the smallest p-value in the U test.
Thus, to test for overall group homogeneity we propose a clustering algorithm that
finds the group configuration S1 and S2 that minimizes the objective function

f(S1, S2) =
−Bn√
Var(Bn)

, (8)

where S1 and S2 are the sets of observation indexes in the two groups with, respectively,
n1 and n2 elements. Here n = n1 + n2 is the total number of elements in Ω = S1 ∪ S2.
Then the whole group is considered heterogeneous if and only if we reject H0 in the
U test for this configuration.

To evaluate the objective function f(·, ·), given in (8), we must estimate Var(Bn). In
the Web Appendix A, when φ(·, ·) is the Euclidean distance, we compute the variance
of Bn for the independent and identically distributed case. We show that the variance
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of Bn under the hypothesis of group homogeneity is given by

Var(Bn) =
n1n2

n2(n− 1)2

[
2n2 − 6n+ 4

(n1 − 1)(n2 − 1)

]
σ4 = C(n, n1)σ4, (9)

where σ4 depends only on the covariance structure of the i.i.d. vectors X1, · · · , Xn and
C(n, n1) depends only on the overall sample size and number of elements in the first
group.

Note, however, that σ4 = 4 (vec(Σ))′ vec(Σ), where Σ is the covariance matrix of
each vector X and thus has the order of L2 parameters. For large values of L, directly
estimating the variances and covariances between the vectors components is not a
feasible strategy to estimate Var(Bn). We instead employ the bootstrap technique (7)
to estimate Var(Bn) when the size of G1 is n1 = bn/2c, where bxc means the integer
part of x, and we explore the relationship between Var(Bn) for different group sizes. If

we have an estimate for the variance of Bn for n1 = i, ̂Vari(Bn), then we can compute

̂Varj(Bn) =
C(n, j)

C(n, i)
̂Vari(Bn), (10)

for all group of size j. To optimize (8) we employ the clustering algorithm in Web
Appendix A.

The procedure for assessing group homogeneity proposed by Valk and Pinheiro [31]
involves applying the U test for all possible group configurations. For large group sizes,
when applying this strategy, we must take into account multiple testing issues.

Here, however, we propose a procedure in which only the group configuration with
maximum standardized Bn is tested. Thus we consider an approximation of the dis-
tribution of Bn maximum under H0.

If we assume that the Bn’s are independent for different group configurations, then
the asymptotic cumulative distribution function of the maximum standardized Bn is
given by

Fmax(x) = P

(
max

(
Bn√

Var(Bn)

)
< x

)
= Φ(x)γ , (11)

where Φ(·)γ is the standard normal cumulative distribution function at the power γ,
with γ = 2n−1 − n − 1. If Fmax(x) > 1 − α, then we reject the null hypothesis of
overall group homogeneity with α significance level.

We note that, when φ(·, ·) is not the Euclidean distance, while the variance of
Bn is still constant for each group size, it may not be computed by expression (9).
Thus, the procedure described for estimating the different variances based on (10)
may not be applied, and we must estimate the variance for each group size with
a separate bootstrap. The computational effort incurred is still significantly smaller
than individual testing. Once the configuration with the maximum standardized Bn
is found, then we can carry out the test for the maximum outlined in expression (11),
effectively correcting for multiple testings (see Web Apendix A).
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2.3. Classification Test

Consider the case where groups G1 and G2 are in fact dissimilar, as indicated by
rejection of H0 in the U test. We are interested in whether a new sample X∗ would be
classified in group G1 or G2. Valk and Pinheiro [31] suggest a comparative approach
based on statistics B1 and B2, where B1 is the statistics Bn of (7) when the new
sample is classified in group G1, and B2 is defined likewise. Note that if X∗ is not well
classified in G2, we might expect the statistic B2 to be smaller than Bn computed
without including the new sample, since this increases the distances within group G2.
Thus, if B1 is larger than B2, classifying the new sample in group G1 produces a better
grouping in the sense that distances within the groups are comparatively smaller than
distances between groups.

While this procedure gives us an empirical criterion for classification, it does not
assess statistical significance. We here propose a classification test based on the dif-
ference D = B1 − B2 to verify if the classification of X∗ in group G1 is statistically
significant. Let µB1

and µB2
be, respectively, the expected values of statistics B1 and

B2, then E(D) = µB1
− µB2

≡ µD. The null hypothesis states that X∗ belongs to
group G2, and thus the sample arrangement that produces B2 is better than the one
that produces B1. The alternative hypothesis states that X∗ is correctly classified in
group G1. The null and alternative hypotheses for this new test are given as

H0 : µD ≤ 0 versus H1 : µD > 0. (12)

However, the full distribution of D is not known, hence we employ the bootstrap
technique to assess significance. In order to do this, we obtain samples from the dis-
tribution of D under the null hypothesis by assuming that X∗ belongs to group G2.
For each bootstrap iteration, we generate group Gb1 by resampling elements of group
G1, and we generate Gb2 and Xb by separately resampling elements of G2 ∪X∗ with
replacement. We then compute the test statistic Db based on the resampled groups.
The test rejects the null hypothesis if the test statistic D is larger than the 1 − α
percentile of the bootstraped distribution.

3. Simulation Studies

In this section we present two Monte Carlo simulation studies. In the first one we
analyze the size and power of the homogeneity test proposed in Section 2.2. In the
second one we analyze the performance of the classification test proposed in Section
2.3.

3.1. Size and Power of the Homogeneity Test

We analyse the size and power of the homogeneity test proposed in Section 2.2, to
assess weather a group of samples is homogeneous. For these simulations, we con-
sider a simple model in which the samples are sequences of length 50, generated from
independent identically distributed standard multivariate normal distributions, and
dissimilarities are measured by the Euclidean distance.

To study the size of the test we simulate under the null hypothesis of homogeneity,
for varying group sizes n ∈ {10, 20, 40, 60}. We consider the homogeneity test which
uses the clustering algorithm given in Web Appendix A to find the configuration with
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maximum normalized U test statistic and then correct for multiple testing through
the max test. We compare these results with the approach of Valk and Pinheiro [31] of
multiple U tests, and with this same approach corrected for multiple testing through
the Bonferroni correction. For large group sizes, it is not feasible to perform all the
2n−1−n−1 tests required to assess homogeneity through the U test approach. For this
reason, in order to compare our approach to that of Valk and Pinheiro [31], we estimate
size and power of these tests by applying them directly to the group configuration with
maximum standardized U test statistic. We also present computational times for the
Max test and estimated times based on the total number of combinations for the
multiple U test approaches.

Table 1 presents the size of the homogeneity test, measured as the fraction of simu-
lations under the null hypothesis for which H0 was rejected, considering the theoretical
α = 0.05. We note that the actual sizes of the tests are greatly affected by group size
n (even with multiple testing corrections), which is an expected consequence of the
combinatorial approach that underlies our concept of homogeneity. As expected, the
simple multiple U test approach performs well only for very small groups, if n ≥ 20 it
will almost certainly reject the null hypothesis. For the group sizes considered in this
study, both the Bonferroni correction and our max test achieve suitable size control.

To evaluate the power of the homogeneity test we consider a scenario in which the
group is divided into two equal sized subgroups with different mean vectors. Table 2
presents the estimated power, computed as the fraction of simulations under H1 for
which we reject the homogeneity hypothesis. As expected, for all tests the power in-
creases with group sizes and separation between groups. Additionally, the uncorrected
U test approach has higher power than the other two tests. However, since this test
fails to achieve correct type I error probabilities in most scenarios, we would only
recommend its use when the group has up to around 10 elements. We also note that
the Max test performs slightly better in terms of power than the Bonferroni corrected
U test, in all intermediate scenarios. Thus, when the group has over 20 elements, our
results favor the use of the max test. Additional factors that favor the use of the
max test in this context are the significant computational savings of the clustering
algorithm, and the fact that the max test arises naturally as a test for the maximum
standardized U test statistic.

3.2. Size and Power of the Classification Test

The performance of the classification test proposed in Section 2.3 is affected by several
factors. Critical issues are the effect of the sample size of each group and the degree of
separation between groups on the power of the test. In order to answer these issues,
we perform some simulations.

The classification test can be applied to any type of data for which dissimilarity
measures are available. Due to our interest in genetic data, and the wide use of dis-
tance methods for DNA sequences, we chose to simulate aligned DNA sequences, in
a situation similar to our Dengue application (see Section 4.3). The data simulation
emulates the evolution of sequences along phylogenetic trees. We first generate sepa-
rate coalescent trees for each group (16) and link the trees through their roots with a
branch of length τ multiplied by the root hight of the largest tree. The parameter τ is
our proxy measure for the degree of separation between groups. We then simulate the
evolution of the n1 + n2 + 1 DNA sequences along the combined tree using the HKY
base substitution model (10).
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In order to estimate the size of the classification test we generate DNA sequences
under the null hypothesis that the sequence being classified X∗ belongs to group G2.
This is done by generating group G2 with n2 +1 sequences and randomly assigning one
as X∗. We performed 1000 simulations under this scheme and applied the separation
U test to each one by using the HKY distance (10). In those simulations where there
is a significant separation between the n1 elements of G1 and the n2 elements of G2,
we then apply the classification test of Section 2.3 to assess the statistical significance
of classifying X∗ in group G1, at level α = 0.05. The size of the classification test
is estimated as the proportion of these simulations in which the null hypothesis is
incorrectly rejected. The power of the test is assessed analogously, with simulations
performed under H1, in which X∗ belongs to group G1.

We perform simulations with varying degrees of between group separation, cor-
responding to values of τ ∈ {0.001, 0.5, 1, 2, 4}, and group sizes ranging in n1 ∈
{5, 10, 15, 20}, with n1 = n2. All simulated sequences are 1000 bases long, and the
overall evolutionary rate is 0.01. Table 3 shows the estimated size and power for all
these simulations.

Our simulations show that the size of the test is close to, or smaller than, α = 0.05 in
all scenarios, even though the data generating process induces a complex dependency
structure between the sequences. For very small groups, however, the estimated size
of the test is slightly larger than α. Additionally, our simulations show that the test
has very large power for almost all simulated scenarios. Furthermore, increasing the
number of elements in both groups leads to power increases for almost all situations,
even though the size of the test tends to decrease with group size. This is a good indi-
cation of test consistency. Moreover, as expected, increasing the separation τ between
groups also leads to power increases. As expected, the more separate the groups are,
the easier it is to verify that X∗ in fact belongs to group G1. However, even when
τ is extremely low the test has considerably high power for large group sizes. This
is at least partially due to the fact that these simulations use the U test to enforce
the assumption that groups G1 and G2 are in fact separate, and we only consider for
power estimation purposes those cases in which the separation assumption is satisfied.

In future work, we shall consider an extensive study of the effects of dissimilarity
measure choices on analyses results. It is important to understand if and how different
measures may affect performances for the homogeneity and classification tests. In a
different context, the work of (4) compared different types of bases substitution models
for DNA sequences through the likelihood ratio test. From the asymptotic theory, the
authors proposed a low computational cost estimator for the power of the likelihood
ratio test.

4. Applications

In order to showcase our methods, we now present three applications to problems of
biological classification based on different types of genetic data.

4.1. Global human genetic diversity

The Human Genetic Diversity Project (HGDP) is a collaboration that makes publicly
available several datasets of human genetic information. We here consider the HGDP
2002 dataset, that contains data for 377 autossomal microsatelite markers in 1056
individuals from 52 populations (26). These data have been previously considered
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in different studies to assess the evolutionary relationships among the populations
(2,26). Through alternative methodologies, the studies produced tree representations
of these relationships that agree in broad strokes, but have discrepancies regarding the
placement of several populations. We employ our methodology to help resolve some
of the points for which the previous studies disagree.

For the dissimilarity measure in this analysis we consider the fixation index FST , a
commonly used differentiation measure in population genetics (20). We compute pair-
wise FST values using the R package polysat (3). For visualization purposes Figure
1(a) presents a map produced from multidimensional scaling of the dissimilarity ma-
trix for all populations in the dataset, in which populations are color coded according
to the continent of the origin. As expected, even this low-dimensional representation
of the genetic data shows some population separation according to geography. In this
analysis, we highlight four sets of populations for which there were classification dis-
crepancies between the analyses in Rosenberg et al. [26] and Chen et al. [2]

The first set consists of the East Asian populations represented in Figure 1(b).
The trees produced in both Rosenberg et al. [26] and Chen et al. [2] show separation
between the populations represented in orange (group A) and in blue (group B), but
disagree concerning the placement of the Japanese and Yakut populations. We first
test genetic distances between groups A and B to verify if these in fact represent two
separate population clusters. We find that the separation between these populations is
non-significant (U test p-value of 0.154). Since the group separation assumption is not
satisfied, we cannot apply the classification test. However, Bn statistics of 1.56× 10−4

and 4.31× 10−4, respectively, favor placing the Japanese and Yakut in group B.
Figure 1(c) presents a set of Central-South Asian populations in blue (Group C) and

a set of European and Middle Eastern populations in red (group D). Both Rosenberg
et al. [26] and Chen et al. [2] indicate separation for these groups, but differ regarding
the placement of the Kalash and Uygur populations. To verify if groups C and D
represent statistically significant clusters we employ the U test and obtain a p-value
of 0.01, indicating group separation. Furthermore, we apply the homogeneity test to
both groups C and D, and find that they are in fact homogeneous. We then apply
the classification test to both populations, and find that both the Kalash and Uygur
populations significantly classify in group C (p-value=0.0380 and 0.0180 respectively).

Two other groups that are also reliably separated in both previous studies are
the Middle Eastern populations presented in red in Figure 1(d) (group E) and the
European populations, presented in blue (group F). However, the studies diverge on
the placement of the Mozabites (located in North Africa but here classified as a Middle
Eastern population) whose genetic data place among the European populations in the
multidimensional scaling map. The U test for genetic separation of groups E and F
indicates that these are not significant population clusters (p-value of 0.854). For this
reason, we cannot apply the classification test to assess the placement of the Mozabites.
However, a Bn statistic of 1.97× 10−4 favors placement of the Mozabites in group E.

As proof of principle we choose two populations that are clearly separate: the Amer-
ican populations, shown in blue in Figure 1(e) (group G), and the African populations
shown in red (group H). As expected, a testing for separation of these groups yields
a highly significant p-value of 0.001. Additionally, since the African San population
presents a troubling placement in Chen et al. (2014), we test to see in which group it
should be classified. Again, our classification test easily places the African San with
the other African populations of group H (p-value 0.0360).
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4.2. Breast Tumor Gene Expression Clusters

Gene expression data have been successfully used to define tumor subtypes in different
types of cancer, and these results have been associated to different clinical outcomes
[15,25]. Here we analyze the Norway/Stanford dataset from Sørlie et al. [29], that
consists of gene expression data measured by DNA microarrays for 534 genes from 122
breast tissue samples. They use machine learning techniques to classify the samples
into five clinically relevant tumor subtypes, based on gene expression profiles, and show
that subtype association correlates to survival prognostics. These genes constitute
an “intrinsic” gene list selected by Sørlie et al. [29] as good candidates for subtype
differentiation. Their procedure consists of first selecting a few tumor samples that
are archetypes for each cluster, and then training the classification procedure on these
cluster seeds. All the 45 samples that do not belong to any cluster seed are classified
according to which subtype they fit in better. We apply our classification test to
assess whether cluster assignments are statistically significant, potentially improving
the confidence in individual prognostics.

In this application the dissimilarity measure that we use is the Euclidean distance
based on expression levels for the 534 “intrinsic” genes. In order to apply our method-
ology we must first verify if the seed samples used to define the clusters in fact con-
stitute distinct homogeneous groups. The five subtypes, named Luminal A, Luminal
B, Basal, ERBB2+ and Normal-like have between 10 and 27 seed elements, and were
all found to be extremely homogeneous. This was assessed using the homogeneity test
with the clustering algorithm speed-up and max test correction for multiple testing.
For the clusters with larger seed groups, the speed-up of the classification algorithm is
paramount to the applicability of the homogeneity test of Section 2.2, since in order
to apply the test directly to a group of 27 elements we would need to test 67,108,836
different configurations. Given the homogeneity of all seed groups, we apply the U test
to the 10 pair comparisons between the five groups and verify that all groups are in
fact separate (with p-values < 0.002). Therefore, all assumptions of the classification
test are satisfied.

We now wish to verify if the remaining 45 samples, that do not constitute any
cluster seed, can be significantly classified in one of the five clusters. Our classification
test can only verify if the classification of a sample is statistically significant when
comparing two distinct groups. Since we want to assess significance of classification
in one of the 5 groups, we adopt the following heuristic procedure. We first compute
the centroid gene expression values for each cluster; then we verify which are the two
centroids that are closer to the sample that must be classified. This sample should
be classified in the group which has the closest centroid. To assess significance of this
classification, we apply the classification test considering the two groups with closest
centroids.

Of the 45 samples not assigned to any cluster seed, the classification of 10 was
considered statistically significant (with significance level α = 0.01): 7 were classified
in the Luminal B cluster and 3 in the ERBB2+. None of the significantly classified
samples were assigned to the Luminal A, Basal and Normal-like clusters.

In order to evaluate the groups defined by significantly classified samples we perform
a survival analysis on different sample groups. Figure 2 presents the Kaplan-Meier
analysis of relapse times, when dividing samples into 5 clusters. First, in Figure 2(a),
we consider only the samples that constitute the cluster seeds, selected for being typical
examples of each subtype. Then, in Figure 2(b), we include the seed samples and those
whose classification was considered statistically significant. Finally, in Figure 2(c), we
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consider the full dataset, classifying all non-seed samples according to proximity to the
cluster centroids. We note that separation of the survival curves was improved when
considering only the significantly classified samples, in comparison to the full dataset.
Additionally, the inclusion of the significantly classified samples had a relatively small
effect in the p-value of subgroup survival curve separation when compared to the seed
samples alone. Furthermore, the grouping considering significantly classified samples
achieved better separation of Luminal B and ERBB2+ survival curves. This indicates
that our method only classifies samples that are well within the patterns of each group,
obtaining group separation similar to that of only the benchmark samples.

We note, however, that while Sørlie et al. [29] employ a complex machine learning
procedure to select the optimal genes for this classification in the specific dataset, we
simply consider the whole “intrinsic” gene list (the starting point for their analysis).
For this reason, the details of our classification will differ. Our objective here was
not to provide a final classification, but to show the usefulness of our methodology in
refining the groups. Given a refined list of genes, or a set of weights for the different
genes, it is straightforward to adapt our analysis.

4.3. Dengue virus serotypes

In recent years, Dengue virus has become a serious epidemiological problem in the
Americas, infecting over 2 million people in 2015 alone, it is distributed in almost all
countries of the continent (21). Viral sequence data have been used, in a variety of
scenarios, to study temporal, geographic and demographic aspects of rapidly evolving
pathogens, such as Dengue virus (5,24). Here we analyze the genetic variability of
the virus in the Americas between the years of 2007 and 2008 by considering 144
RNA sequences from Allicock et al. [1] sampled in that period. Our purpose in this
application is not to map the whole genetic diversity of the virus (for which we would
need to consider a wider range of sequences and temporal sampling), but to showcase
our methods by identifying clusters of homogeneous genetic variation within the 2007
- 2008 viruses. For this analysis, we consider the HKY distance, which is built upon
base substitutions, and differentiates between transition and transversion mutations
(10).

Dengue virus has 4 phylogenetically separate serotypes DENV1 - DENV4, all rep-
resented in this sample. This is clearly reflected in the heat map of sequence distances
between all samples (see Figure 3), which presents 4 clear blocks, one for each serotype.
Accordingly, when we apply the homogeneity test to the whole dataset, we obtain a
p-value of 0 (up to numerical precision of the Gaussian approximation), indicating a
highly heterogeneous group. Additionally, pairwise U tests for group separation indi-
cate that all serotypes in fact constitute distinct groups.

Of more interest is the structure of genetic variance within each group. Figure 4
presents Neighbour-Joining trees (27) for each of the serotypes. Applying the homo-
geneity test to the sequences of each individual serotype, we verify that all serotypes
are composed of heterogeneous sequences (α = 0.05).

Through Figure 4-DENV1 we identify three main subgroups in Serotype 1. We ap-
plied the homogeneity test to each of the individual subgroups, and only the subgroup
composed of sequences from Brazil (in brown) was considered homogeneous (p-value
= 0.8271). Even when we remove the 2008 Nicaraguan sequence that stands out in the
left group of the DENV1 tree, the group composed mainly of Mexican and Nicaraguan
sequences still tests heterogeneous.
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The tree for serotype 2 shows that the sequences of DENV2 for the 2007 - 2008
period are divided into two subgroups, none of which is homogeneous according to
the homogeneity test. If we remove the 2007 Nicaraguan sample that stands out in
the tree, the group in the upper part of the Figure 4-DENV2, composed mainly of
Brazilian, Venezuelan and Colombian viruses seems to be divided into two obvious
subgroups. However only the blue group of Brazilian and Puerto Rican sequences was
considered homogeneous (p-value = 0.2500).

In serotype 3, we identify three major subgroups, however only the green group
composed of Brazilian and Argentinian viruses was considered homogeneous (p-value
= 0.8340). At the right side of Figure 4-DENV3, there is a group of Nicaraguan viruses
that are genetically very similar, but when we applied the homogeneity test to this
group, it was considered heterogeneous. This highlights the fact that homogeneity is
not merely a result of small distances, but a property of the distance distributions.

Finally, the DENV4 tree divides its viruses into two subgroups. The homogeneity
test confirms that both the Peruvian group (purple) and the Venezuelan group (orange)
are homogeneous (see Figure 4-DENV4). Additionally the U test for group separation
indicates that they are in fact distinct groups (p-value < 0.001).

We have analyzed the genetic variation of Dengue virus between 2007 and 2008
in the Americas, and identified five homogeneous subgroups. As expected, the viruses
tend to cluster according to geographical location. We also uncovered a curious pattern
in which the Brazilian sequences for serotypes 1 - 3, are all part of homogeneous groups.

5. Discussion

In this paper we explore U statistics based methods to solve clustering and classifica-
tion problems for genetic data in different biological settings. We propose a classifica-
tion test for verifying whether the assignment of an individual data point to one of
two groups is in fact significant. Additionally, we propose a test to assess group ho-
mogeneity, focusing on computational efficiency. Finally, to showcase their versatility,
we apply these techniques to three biological problems in which we address distinct
clustering and classification questions using different types of genetic data.

Through the applications we exemplified how our methodology can be used in dif-
ferent settings. For each dataset, we considered the appropriate dissimilarity measure
according to the peculiarities of the individual biological problems. First, in the global
human genetic diversity application of Section 4.1, we explored small discrepancies
between conflicting hierarchical classifications of human populations by assessing sig-
nificance of group separation. Then, in the breast tumor application of Section 4.2, we
sought to increase confidence in genetically based patient prognostics by assessing sig-
nificance of tumor subtype classification. Finally, in the Dengue application of Section
4.3, we examined the genetic diversity of the virus to identify clusters of genetically
homogeneous strains. The versatility of these methods is in large a consequence of
their small reliance on distributional assumptions and their flexibility in considering
different dissimilarity measures.

All applications and simulations performed in this paper deal with cases in which
the data dimension is larger than the sample size. While the HDLSS scenario is trou-
blesome for many statistical methods, our U statistics based methodology thrives in
the L >> n context prevalent in genetics.

In Section 2.2 we present the max test, a homogeneity test based on the approach
of Valk and Pinheiro [31]. This is a test for the maximum of the standardized U test
statistic over the set of all possible subgroupings, and it arises to control for multiple
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testing. Additionally, when the Euclidean distance is used, we explore the theoretical
variance of the U test statistic to build a clustering algorithm which gives significant
computational time savings. Through simulations, we established that the max test
adequately controls the type I error as the number of elements in the group increases.
Furthermore, we note that, for larger group sizes, the test achieves adequate power,
and we thus recommend its use for homogeneity testing with around 20 samples or
more. Moreover, when groups reach around 40 or more samples our approach allows for
homogeneity testing, since it is not computationally feasible to carry out the alternative
multiple U test procedure of Valk and Pinheiro [31]. For smaller group sizes, the overall
type I error of the uncorrected multiple U test approach is not largely affected by
multiple testing, and should be preferred due to its larger power.

One use of the clustering algorithm developed for the homogeneity test, which we
did not explore in this paper, is the clustering of data into two optimal groups. Al-
though this procedure shares conceptual similarities with k-means clustering (k = 2),
it produces quite different results since it aims to simultaneously minimize within
group distances and maximize between group distances.

The Dengue application of Section 4.3 highlights the fact that our concept of homo-
geneity is not merely a result of small distances between the samples, but a property
of the distance distributions. Thus, our method for finding genetically homogeneous
groups could be applied to the study of early stages of adaptive radiation, situation
in which a group of organisms diversifies very rapidly, which may lead specific evolu-
tionary structures (8). These methods could also be employed in questions regarding
the determination of biological species based on genetic variability.

In Section 2.3 we explore the classification criterion of Valk and Pinheiro [31] for
classifying a sample X∗ into one of two groups to build a classification test. We employ
the bootstrap to assess significance of 2-way classification by comparing the U test
statistic Bn, computed with X∗ classified in group G1, with Bn when X∗ is classified
in group G2. This method is tailored for a situation in which we have two reference
groups, and does not naturally extend to settings with more groups, such as the one
presented in the breast cancer application of Section 4.2. The choice of the heuristic
group centroid procedure for that 5-way classification problem reflects the centroid
based algorithm of Sørlie et al. [29]. However, we were not able to verify that this
procedure satisfies some desirable properties in 5-way classification. For instance, it is
not clear that if we apply the classification test for some pair of the 5 groups and the
new sample is significantly classified in one, then it will also be significantly classified in
the group with closest centroid. This is mainly due to considerations of different group
sizes. However, our heuristic procedure presents a method for assessing statistical
significance based on a 2-way classification test that is closely related to the original
problem. In order to address these types of problems formally, an n-way classification
test based on U statistics should be subject of future work.

Most statistical methods in genetics use simplifying assumptions on the data gener-
ating processes, and their impacts on the analyses are not always clear. In contrast, the
U statistics model free approach that we employ here assumes only that all samples
belonging to a group come from the same distribution, relying on no further marginal
distributional assumptions.

In particular, the genetic data dependency structure can be a critical modelling is-
sue. Correlation of genetic data within an individual genome can be a consequence of
genetic linkage and functional constraints, while correlations between samples can arise
from evolutionary relatedness. In general, these processes are not completely mapped
out, and most statistical genetics methods make strong simplifying assumptions re-
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garding these dynamics whenever they are not the focal points of the analyses, since
explicitly modeling them can often be prohibitive. The impacts of such assumptions
are not always clear. The non-parametric bootstrap approach that we employ for the
U test and the classification test implies that most of our methodology is robust to
dependency assumptions, as illustrated by the simulations of Section 3.2. However,
the asymptotic normality of the test statistic established in Valk and Pinheiro [31]
depends on independence between samples and the particular choice of dissimilarity
measure. This result underlies our reasoning for the max homogeneity test. Moreover,
our clustering procedure (see Section A.1), that largely accelerates the homogeneity
test, is built upon observations for the variance of Bn derived under the Euclidean
distance as well as between sample independence assumptions. However, at this point,
the robustness of our homogeneity test to deviations from this fairly common inde-
pendence assumption has not been fully quantified. This will be the subject of future
work.

Software

R codes are available at
https://github.com/gcybis/UStatistics ClusteringAndClassification Biosequences

Supplementary Material

Supplementary material is available online at http://some address.
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Figure 2. Kaplan-Meier analysis of relapse time. Comparing relapse times for the different clusters considering
(a) only the samples in the cluster seeds; (b) cluster seed samples combined with those whose classification was

considered statistically significant; (c) the full dataset.
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Figure 3. Heatmap of HKY distances between all DENV sequences. Side colors indicate the serotype of each

sequence.

18



DENV1

2007 VEN2007 VEN

2007 VEN

2007 BR

2007 NIC

2007 MX
2007 MX

2007 MX 2007 COL2007 COL2007 COL
2007 COL

2007 VEN

2007 VEN2007 MX2007 MX

2008 NIC

2008 BR

2008 VEN

2008 VEN

2008 NIC2008 NIC

2008 NIC

2008 MX
2008 MX

2008 MX

2008 MX

2008 MX

2008 COL

2008 BR2009 BR
2009 BR

DENV2

2007 NIC

2007 VEN2007 VEN2007 VEN

2007 VEN

2007 VEN

2007 NIC

2007 PR
2007 PR
2007 PR

2007 PR

2007 NIC2007 NIC

2007 BR

2007 VEN

2007 NIC

2007 BR2007 BR2007 BR2007 BR

2007 MX
2007 MX

2007 COL
2007 VEN

2007 COL

2007 MX2007 MX

2007 MX2008 NIC

2008 NIC2008 NIC

2008 VEN
2008 VEN2008 VEN

2008 MX

2008 BR2008 BR2008 BR2008 BR2008 BR

2009 BR

DENV3

2007 ARG

2007 ARG

2007 PR2007 PR2007 PR

2007 BR

2007 VEN2007 VEN

2007 COL

2007 COL 2007 BR

2007 VEN

2007 MX

2007 COL

2007 VEN
2007 VEN

2007 BR
2007 BR

2007 BR

2007 COL

2007 COL

2008 VEN2008 VEN

2008 BR

2008 NIC
2008 NIC

2008 NIC
2008 NIC2008 NIC

2009 BR

2009 COL

2009 NIC
2009 NIC2009 NIC2009 NIC2009 NIC

DENV4

2007 VEN

2007 VEN
2007 VEN

2007 PERU

2007 VEN2007 VEN2008 VEN

2008 PERU2008 PERU
2008 PERU 2008 PERU

2008 PERU

2008 PERU

Figure 4. Neighbour-Joining tree for each Dengue virus serotype (DENV1-DENV4). Sequences are labelled
according to year and country of isolation. Coloured (non-grey) labels indicate homogeneous clusters (p-value
> 0.05).
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Table 1. Size and computational time (in seconds) of the homogeneity test for different
group sizes n.

U Test Max Test
n uncorrected size Bonferroni size time size time

10 0.022 0.000 69.30 0.000 3.45
20 0.997 0.000 2.38× 105 0.000 11.44
40 1.000 0.003 9.15× 1011 0.003 44.47
60 1.000 0.060 2.15× 1018 0.079 103.20

Table 2. Power of the homogeneity test for different group sizes n1 and n2 and different
group separation.

n1 × n2 U Test Max Test
uncorrected Bonferroni

µ1 = 0, µ2 = 0.33
5 × 5 0.034 0 0

10 × 10 0.980 0 0
20 × 20 0.999 0.018 0.020
30 × 30 1.000 0.415 0.465

µ1 = 0, µ2 = 0.66
5 × 5 0.537 0 0.001

10 × 10 0.995 0.386 0.445
20 × 20 1.000 0.998 1.000
30 × 30 1.000 1.000 1.000

µ1 = 0, µ2 = 1
5 × 5 0.994 0.312 0.398

10 × 10 1.000 0.998 1.000
20 × 20 1.000 1.000 1.000
30 × 30 - - -
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Table 3. Estimated size and power of the classification test for varying degrees of
separation τ between groups.

Group sizes τ
n1 × n2 0.001 0.5 1 2 4

Size Power Size Power Size Power Size Power Size Power
5 × 5 0.058 0.450 0.066 0.842 0.071 0.905 0.074 0.927 0.079 0.913

10 × 10 0.052 0.946 0.043 0.999 0.049 0.999 0.035 1.000 0.054 1.000
15 × 15 0.026 0.986 0.052 0.998 0.038 1.000 0.028 1.000 0.042 1.000
20 × 20 0.035 0.997 0.037 0.999 0.035 1.000 0.035 1.000 0.030 1.000
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